Boron–Nitrogen Compounds. XXVI.^{1,2} A Spectroscopic Study of Dimethylaminovinylbromoborane

By KURT NIEDENZU, JOHN W. DAWSON, GEORGE A. NEECE, WOLFGANG SAWODNY,³ DAVID R. SQUIRE, AND WOLFGANG WEBER

Received June 20, 1966

The infrared spectrum of dimethylaminovinylbromoborane, $(CH_3)_2NBBrCH=:CH_2$, in the 300-4000-cm⁻¹ range has been recorded and fundamental vibrations have been identified utilizing data derived from the Raman and infrared spectra of bis(dimethylamino)vinylborane, $CH_2=:CHB[N(CH_3)_2]_2$. Also, the proton magnetic resonance spectrum of dimethylamino-vinylbromoborane has been studied and, on the basis of chemical shift data obtained at various temperatures, a barrier to rotation about the B-N axis of the molecule of the order of magnitude of 14.0 ± 0.4 kcal/mole has been calculated. Evaluation of the spectroscopic data permits a discussion of the bonding in the molecule.

Introduction

The existence of B–C π bonding in vinyl derivatives of boron was originally postulated by Ritter and coworkers^{4,5} and later was substantiated by some physicochemical studies.^{6,7} More recently,⁸ a detailed investigation of the vibrational spectrum of vinyldibromoborane, CH₂==CHBBr₂, established that the valence force constant k(BC) in this compound is substantially increased when compared with that of trimethylborane, $B(CH_3)_3$, or methyldibromoborane, CH₃BBr₂. Also, the force constant k(CC) of vinyldibromoborane is clearly smaller than the corresponding constant of ethylene or of the double bond in propylene. Therefore, it is reasonable to consider the existence of electron delocalization in the vinyldibromoborane molecule as indicated in

This postulation is in agreement with the results of an LCAO moleculear orbital treatment⁷ which resulted in a B–C bond order of 1.35 for the B– C_{viny1} linkage in dimethylvinylborane, $(CH_3)_2BCH=CH_2$.

On the other hand, it is known that the free electron pair of a nitrogen attached to a boron atom can participate in the B–N bonding thereby effecting a certain degree of double-bond character

$$\mathbf{B} - \mathbf{\ddot{N}} \longleftrightarrow \mathbf{B} - \mathbf{\ddot{N}} \tag{2}$$

The B–N stretching frequency of boron–nitrogen compounds has often been related to the bond order. Since

(1) Part XXV: W. Weber, J. W. Dawson, and K. Niedenzu, *Inorg. Chem.*, **5**, 726 (1966).

(2) Supported by the U. S. Army Research Office, Durham, N. C.
(3) Visiting Lecturer from the Laboratorium für anorganische Chemie, Technische Hochschule, Stuttgart, Germany.

(4) T. D. Parsons and D. M. Ritter, J. Am. Chem. Soc., 76, 1710 (1954).

(5) T. D. Parsons, M. B. Silverman, and D. M. Ritter, *ibid.*, **79**, 5091 (1957).

(6) T. D. Coyle, S. L. Stafford, and F. G. A. Stone, J. Chem. Soc., 3103 (1961).

(7) C. D. Good and D. M. Ritter, J. Am. Chem. Soc., 84, 1162 (1962).
(8) K. Niedenzu and W. Sawodny, Z. Anorg. Allgem. Chem., 344, 179 (1966).

the vibrational frequencies are influenced by coupling with other modes, the ν BN will not give an accurate picture of the bonding. It can be used only for a rough evaluation of bond order data whereas the valence force constants can be related more directly to the bond order than vibrational frequencies. However, in most cases, the calculation of the force constants involves a considerable mathematical treatment which normally limits the application of this method to a study of simple molecules containing only a relatively small number of atoms.

A more convenient method designed to evaluate the bond order of aminoboranes, $R_2NBR'_2$, has been developed in recent years. As noted above, participation of the free electron pair of the nitrogen in the B-N linkage provides a certain degree of B-N double-bond character (eq 2). If the B-N π bonding is strong enough, one can expect an appreciable barrier to rotation about the B-N axis of the molecule, and *cis* and *trans* isomers may be expected in the case of unsymmetrically substituted aminoboranes (I, II). The

existence of aminoborane rotational isomers was originally suggested by Niedenzu and Dawson⁹ and was subsequently confirmed by nmr studies.^{10,11} The barrier to rotation provides information about the degree of π bonding and hence the bond order. Such data can be obtained by a simple procedure. For example, the two methyl groups of a compound of type III will

⁽⁹⁾ K. Niedenzu and J. W. Dawson, J. Am. Chem. Soc., 82, 4223 (1960).
(10) G. E. Ryschkewitsch, W. S. Brey, Jr., and A. Saji, *ibid.*, 83, 1010 (1961).

⁽¹¹⁾ P. A. Barfield, M. F. Lappert, and J. Lee, Proc. Chem. Soc., 421 (1961).

	VIBRATIO	DNAL SPECTRUM OF BIS(DIM	methylamino)vinylboi	RANE	
Raman	Infrared	Assignment	Raman	Infrared	Assignment
247 w, dp			1289 m, p	1302 m	δCH′
	340 vw			1350 mw	
365 mw, dp		Skeletal def	1363 m, p		
	$395 \mathrm{w}$			(1382 vs	$\nu_{s}BN_{\perp}$
479 vw, b		j		1392 sh	
557 w		, ,		1404 w	
	608 vw		1420 s, p	$(1422 \ w)$	δCH_2
620 m, p		$ au_{\mathrm{CH}_2}$	1447 s, dp	∫1444 vs	
	682 m			1456 m	δCH_3
691 w, dp			1488 sh	(1495))
	699 sh		1512 vs	$\left\{1506\right\}^{VS}$	$\nu_{\rm as} B N_2$
	800 m			1520 sh	
	878 mw		1609 vs, p	1603 s	νCC
890 sh	∫891 m	νBC		1746 vw	
903 w, dp)902 sh			1888 vw	
	941 s	$\gamma CH'$		1990 vw	
954 mw, dp				2080 [°] vw	
1026 w, p?	1013 s	$\gamma \mathrm{CH}_2$		2120 vw	
1070 w, dp	1058 s	$\nu_{s}NC$		2400 vw	
1101 mw, p	(1102 m	Ì	2507 w	2500 vw	
	{1125 s	$\nu_{as}NC + \rho CH_{3}$	2798 s, p	(2785 sh))
1142 w, b, dp	1142 m		2852 sh, p	2860	
	1192 ms	}	2874 vs, dp	vs, b	
	∫1212 s	ρCH_3	2924 s, p	$\{2920\}$	νCH
	1236 s	$ ho CH_3$	2972 vs, p	2965	
	`		2988 sh, dp		1
			3054 s. dp	[3048 m	1

TABLE I Ibrational Spectrum of Bis(dimethylaming)vinvlboran

^a Frequencies in cm⁻¹: w, weak; m, medium; s, strong; v, very; b, broad; sh, shoulder; p, polarized; dp, depolarized.

be in different chemical environments if there is hindered rotation about the B–N linkage. This event is then evidenced by the appearance of two distinct ¹H resonances for the CH₃ groups when the pmr spectrum of the compound is recorded. Rotation about the B–N axis increases with temperature and at a certain point one no longer can distinguish two separate peaks for the two methyl resonances, indicating virtually free rotation. From such data the barrier to rotation due to the B–N double-bond character as depicted in eq 2 has been calculated for a variety of aminoboranes;¹² potential barriers on the order of 14–20 kcal/mole have been reported.

A point of interest exists as to whether or not a competition obtains for the vacant p_z orbital of a boron atom between the π electrons of a boron-bonded vinyl group and the free electron pair of an amino group bonded to the same boron atom. Therefore, we have investigated the vibrational spectrum of dimethylaminovinylbromoborane, (CH₃)₂NBBrCH==CH₂, in the 300-4000-cm⁻¹ range. Owing to the high fluorescence of the compound, no useful Raman spectrum could be obtained. Since this lack of information may result in erroneous assignments of major vibrational modes, Raman and infrared spectra of bis(dimethylamino)vinylborane, $CH_2CHB[N(CH_3)_2]_2$, were recorded and interpreted as supporting evidence. Based on these data, the proposed assignments of fundamental vibrations of dimethylaminovinylbromoborane appear to be reasonably certain and a rough evaluation of the bonding within the molecule can be realized. A more refined

picture of the bonding situation is obtained through additional studies of the compound by nuclear magnetic resonance spectroscopy, particularly by investigating the influence of varying temperature on the behavior of proton resonance lines.

Experimental Section

Bis(dimethylamino)vinylborane and dimethylaminovinylbromoborane were prepared by previously reported procedures.¹³ Infrared spectra of films of the neat liquid compounds were recorded with a Perkin-Elmer Model 621 spectrophotometer in the 300–4000-cm⁻¹ region. Raman spectra were obtained with a Cary Raman spectrometer, Model 81. Proton magnetic resonance spectra were recorded of the neat liquids with a Varian A-60 high-resolution nmr spectrometer using tetramethylsilane sealed in capillary tubes as an internal standard. For the studies of the temperature dependence of nmr lines, a Varian V-6040 variabletemperature accessory was employed. Calculations were carried out with an IBM Model 7020 computer utilizing an iterative method.

The Vibrational Spectrum of Bis(dimethylamino)vinylborane

The vibrational spectrum of bis(dimethylamino)vinylborane shows the expected complexity of such a polyatomic molecule and cannot be interpreted completely. Table I lists the spectrum of the compound including the assignments made for the various vibrational modes. No uncertainties exist in the region above 1600 cm^{-1} .

According to Becher, 14 symmetrical $\rm CH_3$ deformational modes of dimethylaminoboranes couple strongly

⁽¹³⁾ P. Fritz, K. Niedenzu, and J. W. Dawson, Inorg. Chem., 8, 626 (1964).

⁽¹⁴⁾ H. J. Becher, personal communication; H. J. Becher and H. T. Bacchle, Z. Physik. Chem. (Frankfurt), 48, 360 (1966).

with B–N stretching vibrations, and assignments in the 1450–1500-cm⁻¹ region cannot be made unequivocally. However, comparing the present data with the spectrum of bis(dimethylamino)methylborane,¹⁵ the antisymmetric BN₂ stretching mode of bis(dimethylamino)-vinylborane can be assigned at 1506 cm⁻¹ and ν_8 BN₂ at 1382 cm⁻¹. It is difficult to discriminate between ρ CH₃ vibrations and ν_{as} NC₂ in the 1100–1200-cm⁻¹ region; ν_8 NC₂ can probably be assigned at 1064 cm⁻¹ and the B–C stretching mode is identified at 891 cm⁻¹. Most of the remaining assignments are based on a comparison of the present data with the spectra reported for bis(dimethylamino)methylborane¹⁵ and vinyldibromoborane.⁸

No reasonable interpretation can be made for the absorption at 1357 cm^{-1} . This band which is normally of medium to strong intensity has been consistently observed in the $1355-1365-\text{cm}^{-1}$ region of the infrared spectra of a variety of B-vinylated boranes.

The Infrared Spectrum of Dimethylaminovinylbromoborane

On the basis of the preceding discussion of the vibrational spectrum of bis(dimethylamino)vinylborane, several assignments of vibrational modes observed in the infrared spectrum of dimethylaminovinylbromoborane can be made with reasonable certainty. The spectrum of the latter compound is listed in Table II.

TADID	TT.
TADLE	11

Infrared Spectrum of Dimethylaminovinylbromoborane ^a				
Freq, cm ⁻¹	Assignments	Freq, cm ⁻¹	Assign- ments	
338 m		1367 vw		
518 m		∫1402 sh	δCH2	
(655 s	νBBr	1422 vs	νBN	
$\{665 \text{ sh}$		1449 m) CH	
(678 sh		1461 m	focn3	
698 vw		1484 mw		
748 w		(1505 sh)		
780 m		1512 vs	δCH3	
813 mw		1530 sh		
868 s		1548 sh		
∫938 sh	$\gamma CH'$	1604 s	νCC	
)959 s	νBC	1923 w		
1000 m		2352 vw		
1026 vw	$\gamma \mathrm{CH}_2$	2795 ms)	
∫1060 sh	$\nu_{s}NC + \rho CH_{3}$	2868 w		
(1074 s		2928 vs	νCH	
1140 s	$\int \nu_{\rm as} NC + \rho CH_3, \ \rho CH_2$	2984 w		
1197 s	ſ	3012 wm		
1295 vw	δCH'	3064 mw	J	

 $^{\alpha}$ Frequencies in cm $^{-1}$: w, weak; m, medium; s, strong; v, very; sh, shoulder.

The B–N stretching vibration is identified at 1422 cm^{-1} , and νBC is tentatively assigned at 959 cm⁻¹. These observations appear to be of some significance. In the spectrum of vinyldibromoborane, νBC was assigned at 991 cm⁻¹. Replacing the bromine atoms of CH₂==CH-BBr₂ successively by dimethylamino groups results in a lowering of the BC frequency to 959 and 891 cm⁻¹, respectively. If this frequency decrease is not due to (15) J. W. Dawson, P. Fritz, and K. Niedenzu, J. Organometal. Chem. (Amsterdam), 5, 13 (1966). a coupling effect, this observation would indicate a corresponding decrease in the force constant k(BC). In other words, the lone pair of electrons of the amino group participates in the B–N bonding, thus reducing the electron deficiency at the boron atom and thereby lessening the degree of B–C π bonding. This circumstance, however, is not apparent from the frequency of the C==C stretching mode, which is consistently observed in the spectra of B-vinylated boranes at $1605 \pm 10 \text{ cm}^{-1}$, independently of the nature of the other substituents.

The Proton Magnetic Resonance Spectrum of Dimethylaminovinylbromoborane

The ¹H nmr spectrum of dimethylaminovinylbromoborane at room temperature shows two distinct sets of resonance lines. A broad and unresolved multiplet structure centered near τ 3.52 ppm has been assigned to the resonance of the protons of the vinyl group. On the other hand, the two methyl groups of the molecule exhibit two sharp and distinct lines of equal intensity near τ 6.70 and 6.78 ppm, respectively. This observation indicates the presence of two sets of ¹H nuclei for the methyl groups of dimethylaminovinylbromoborane, which are in two chemically different but equally abundant environments.

As the sample is heated, the two methyl proton resonance bands broaden and the separation between the peaks decreases until they finally coalesce at a temperature T_c near 125°. This event appears attributable to hindered rotation about the B–N linkage of the molecule due to B–N π bonding. On the basis of the temperature-dependent spectral changes, the barrier to rotation about the B–N axis of the molecule has been calculated using the analytical methods for the evaluation of such data as developed by Gutowsky and Holm.¹⁶

The results of several recordings of the changes of peak separation $\delta \omega_e$ of the two methyl resonances of dimethylaminovinylbromoborane with varying temperature T are summarized in Table III. In the absence of exchange effects or overlap of components, the width of each methyl resonance band at halfmaximum peak height is $2/T_2$ where T_2 is the transverse relaxation time; $2/T_2$ was found to be essentially constant in the temperature range from -10 to $+40^{\circ}$ with a value of 1.31 ± 0.01 cps. Over the same temperature range, the maximum separation of the two methyl resonance lines, $\delta \omega_{\infty}$, was found to be constant with a value of 5.10 ± 0.05 cps. The activation energy, $E_{\rm a}$, was obtained from a plot of log $(1/t\delta\omega_{\rm c})$ vs. 1/T, where t is half of the methyl proton site lifetime by a least-square fit. It is quite insensitive to changes in $2/T_2$ and was calculated to be 14.0 \pm 0.4 kcal/mole. The frequency factor ν^0 , the internal torsional frequency, was found to be in the order of 10^9 sec⁻¹.

Discussion

It has been established¹⁷ that a boron-bonded vinyl group tends to afford a certain degree of B–C π bonding

⁽¹⁶⁾ H. S. Gutowsky and C. H. Holm, J. Chem. Phys., 25, 1228 (1956).

⁽¹⁷⁾ See ref 8 and literature cited therein.

		TABLE 111		
BA	ARRIERS TO R OF DIMETHY	OTATION ABOU	it the B–N B bromoborane	OND B
Τ,	<u></u>	δω _e , ι	cps	
°C	I	II	111	IV
50	5.10	5.10	5.10	5.10
90	4.90	4.95	4.95	4.95
110	4.00	4.40	4.60	4.10
115	3.46	4.20	3.85	3.60
120	2.20	3.35	3.10	2.80
125	Merged	1.50	1.30	Merged
127	-	Merged	Merged	-
$E_{\rm a}$, kcal/	14.40 \pm	$13.63 \pm$	13.74 \pm	14.27 \pm
mole	0.2	0.2	0.3	0.2

by delocalization of the π electrons of the carboncarbon double bond (*cf.* eq 1). The free electron pair of the nitrogen atom of an aminoborane can also participate in the bonding¹⁸ (*cf.* eq 2). Therefore, the π electrons of these two substituent groups on the boron of an aminovinylborane will compete for the vacant p_z orbital of the boron atom. On this basis, the existence of a dienic configuration (IV) is unlikely

to predominate in the electronic equilibrium of an aminovinylborane. Rather, one must anticipate a situation as depicted in eq 3. Which of the possible

$$>C-C-C-B-N< \longleftrightarrow \begin{cases} >C-C-B-N< \\ >C-C-B-N< \\ >C-C-B-N< \end{cases} \longleftrightarrow >C-C-C-B-N< \\ >C-C-C-B-N< \end{cases}$$

alternates is predominant will depend on the π -electron donor strength of the two groups bonded to the boron atom.

An evaluation of the vibrational spectra of the bis-(dimethylamino)vinylborane (A) and dimethylaminovinylbromoborane (B) appears to indicate a relatively high B–N bond order for aminovinylboranes. The B–N stretching frequency is found near 1430 cm⁻¹ (A: $\nu_{as}BN_2$ 1506 cm⁻¹, ν_sBN_2 1382 cm⁻¹, mean value 1444 cm⁻¹; B: νBN 1420 cm⁻¹). However, present facilities do not permit the calculation of the valence force constants, which should provide a better correlation with the bond order than the vibrational frequencies.

The C==C stretching frequency of A and B is observed near 1604 cm⁻¹. This relatively low value may indicate a slight decrease in the double bonding between the carbon atoms of the vinyl group as compared to ethylene. This interpretation of the data finds support from some ultraviolet studies. The ultraviolet spectrum of bis(dimethylamino)vinylborane is similar to that of dimethylvinylborane⁷ and exhibits a main band at 218 m μ . Table IV lists ultraviolet absorption bands of some vinylated boranes. It is quite apparent that the band associated with the vinyl group undergoes a clear

(18) K. Niedenzu and J. W. Dawson, "Boron-Nitrogen Compounds," Springer-Verlag, Berlin, 1965.

TABLE IV Ultraviolet Absorptions of Some Vinylboranes

Compound	$\lambda_{\max}, \dots, \dots,$	Ref
$(CH_3)_2BCH = CH_2$	196	7
$[(CH_3)_2N]_2BCH=CH_2$	218	This work
$(CH_3)ClBCH=CH_2$	206	7
$[(CH_3)_2N]BrBCH=CH_2$	223	This work

bathochromic shift as compared to that of ethylene $(162 \text{ m}\mu)$.

On the other hand, a potential barrier to rotation about the B-N bond of dimethylaminovinylbromoborane of 14.0 ± 0.4 kcal/mole has been calculated based on nmr experiments. Utilizing the procedure as previously outlined by Watanabe, et al.,¹² a relative π bond order of about 0.45 is calculated for the B-N bond of the compound. This value compares favorably with that of dimethylaminophenylchloroborane.¹² In other words, the effect of a boron-bonded vinyl group on the B-N bond order of an aminovinylborane appears to be of the same character and the same order of magnitude as in a comparable aminophenylborane. For the latter type of compound a certain degree of B–C_{ary1} π bonding corresponding with a decrease in the B-N bond order had been deduced from experimental data¹⁹ and was confirmed by an independant molecular orbital treatment.²⁰ On the basis of the present data, it is therefore evident that an increase in the B-N bond order of an aminovinylborane through a conjugation effect as depicted in IV is not likely, and structure IV appears not to contribute to the electronic equilibrium of the molecule.

In dimethylaminovinylbromoborane, the nitrogen is a stronger π -electron donor than the vinyl group, as is indicated by the degree of B–N double-bond character. Nevertheless, the B–N bond order of the aminovinylborane is somewhat diminished when compared to a corresponding aminoalkylborane. As a matter of fact, on the basis of an analogous evaluation,¹² the B–N double-bond character ρ BN of dimethylaminovinylbromoborane is even somewhat smaller than that of dimethylaminophenylchloroborane (see Table V). This

TABLE V B-N DOUBLE-BOND CHARACTER OF SOME AMINOBORANES

	<u> </u>		
	kca1/	νBN,	
Compound	mole	cm ⁻¹	ρBN
Dimethylaminophenyl- ethylborane	19.7	1413	0.63
Dimethylaminophenyl- chloroborane	15.2	1415	0.49
Dimethylaminovinyl- bromoborane	14.0	1420	0.45

observation implies that a boron-bonded vinyl group is a stronger electron donor than is the phenyl group. This conclusion cannot be reached from a consideration of the vibrational spectra.

⁽¹⁹⁾ G. M. Wyman, K. Niedenzu, and J. W. Dawson, J. Chem. Soc., 4068 (1962).

⁽²⁰⁾ J. J. Kaufman and J. R. Hamann, Advances in Chemistry Series, No. 42, American Chemical Society, Washington, D. C., 1964, p 95.